

table of contents

Introduction

How to Use These Prompts?

Prompt for Styling & Components

Prompts for Schema & Data Layer

Prompts for Next.js Migration & Updates

Conclusion

Prompt for APIs & Backend

Prompt for Dynamic Pages & Routing

Prompts for Productivity & Debugging

Introduction

“As a CTO, I spend a lot of time looking for ways to speed
up my work without sacrificing quality, and AI has been the
answer to that.

Many developers worry about crafting perfect prompts,
convinced that careful wording will guarantee the best
results. The good news is, simple prompts in the right
context are often more effective.

Below, you’ll see examples that stay short and clear, yet
deliver strong outcomes because they build on real code or
focus on small, well-documented features.

 Adapt them to your own work, spend less time on repetitive
fixes, and keep your projects moving.”

Happy prompting!

Jakub Dakowicz
CTO at Pagepro

Find me on LinkedIn

https://www.linkedin.com/in/jakub-dakowicz/?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs
https://www.linkedin.com/in/jakub-dakowicz/?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs

How to
Use These Prompts?

Designing great prompts takes more than copy-pasting.
Here are some rules that’ll get you the best results:

Prompt Engineering Best
Practices

The more context you give, like the framework version, coding style,
project structure, the better the AI’s response will be.

Be Explicit

Show the AI a snippet of what you already have so it can align with
your style.

Provide Examples

Instead of asking for a whole feature at once, ask for a component,
then a schema, then tests.

Break Big Tasks into Smaller Ones

Don’t expect the first answer to be perfect. Treat it like pair-
programming: ask, review, refine.

Iterate

AI can make mistakes. Always validate the results before
submitting them.

Check the Output

Change variable names, add details about your stack, and re-ask the
same questions with different wording.

Experiment

This has become my go-to coding environment.
The built-in chat allows me to test ideas, debug issues, and
get instant feedback without switching contexts. It’s like
having a coding partner on hand, ready to suggest
improvements or catch mistakes before they slow me
down.

Cursor IDE

Perplexity
When I need reliable research or want to dive deeper into a
topic, I turn to Perplexity.
It helps me gather references and get structured answers
faster than traditional search. It’s especially useful for
staying ahead of new developments in frameworks and
tools.

ChatGPT
For process design, refining copy, or sparking creative ideas,
ChatGPT is where I go.
I don’t use it for writing production code, but it’s invaluable
for shaping documentation, brainstorming approaches, or
simply seeing a problem from a different angle.

These are the AI solutions I use and the ways I integrate
them into my work:

Which AI Tools Should You Use?

Prompts for
Styling & Components

Update Styles:
Convert Flex to Grid

LLMs are great in updating those small, but well-
documented things that can take you forever.

This kind of prompt is handy if you need to test out
different variants for you solution. For example converting
flex to grid, change layouts to different (2 columns to 4,
different alignments etc).

Convert these flex styles to the grid system.

We need 2 columns in a ratio of 3/1.

We need 2 rows, where 1st will have a 400px height and
the bottom should have auto height.

Prompt Idea

Benefits:
Cleaner markup, better maintainability, and more control
over responsive design.

Output Example:

Update Styles:
Convert Flex to Grid

Instead of loading iframes right away, this prompt waits
until they’re close to the viewport.

While they’re spinning up, it shows our existing loader so
users aren’t left staring at a blank box.

I need to load this iframe using the interesection
observer when it will be close to the viewport.

Additionally I need to display a spinner when it's being
loaded.

We already have a spinner in a project so use it instead
of creating a new one.

Prompt Idea

Benefits:
Cleaner markup, better maintainability, and more control
over responsive design.

Alternative prompt Sample

Convert this to use this

display: grid;
grid-template-columns: 3fr 1fr;
grid-template-rows: 3fr 1fr;

Prompt Idea

Benefits:
Cleaner markup, better maintainability, and more control
over responsive design.

Output Example:

Prompts for
Schema & Data Layer

Start by creating just a React component for this
module.

Do not create the Sanity schema yet.

For text nodes, use the RichText component.

You can use @HeroMain.tsx as an example.

The image should have a similar style to the one in the
hero main component.

Prompt Idea

Build Component from
Figma (without Schema)

Perfect for those early design-to-code steps: turn a Figma
selection into a working React component without worrying
about schemas yet. You can focus on the UI before layering
in data structures.

Note: this should be done using the Figma MCP to connect
to the design

Benefits:
Cleaner markup, better maintainability, and more control
over responsive design.

Output Example:

I have a selection in Figma.

I want a component that will match the one in Figma.
Use other modules as a reference.

Prepare a UI module component, and add it to the
modules list. Add it to the Sanity modules list.

Create a Sanity schema for this module.

I want to name it ContentWithLogos.

Title and descriptions should be a single simpleRichText
field.

I want a list of logos (min 3) and an option to turn on
animation.

Prompt Idea

Build Component
& Schema from Figma

When you need both the visual component and the Sanity
schema, this prompt accelerates the full flow. Your UI and
data model will stay in sync from the start.

Benefits:
Cleaner markup, better maintainability, and more control
over responsive design.

Output Example:

Refactor Schemas:
Extract Common Code

Schemas often get messy with repeated patterns. Use this
prompt to spot duplication and centralize shared fields into
a base schema.

I have @link.tsx and @link.tsx - they both have a lot of
common code.

Can we create a linkBaseSchema that can be used for
both of them?

Prompt Idea

Benefits:
Cleaner codebase, easier maintenance, and fewer bugs
caused by inconsistent schema definitions.

Output Example:

Prompts for
Next.js Migration
& Updates

Update Legacy Middleware
to Next.js 15+

Middleware APIs evolve quickly. Modernize old logic with
this prompt, so it will run smoothly in Next.js 15 without
breaking authentication or redirects.

Benefits:
Long-term compatibility, reduces tech debt, and keeps your
app updated with the latest features.

Update this syntax to be valid in NextJS 15.

Prompt Idea

Can you update this syntax to Next.JS 15?

Prompt Idea

Update Legacy API Handler
to Next.js 15+

Old API handlers can break with new Next.js versions. With
this prompt you can refactor them to follow updated
patterns.

Benefits:
Long-term compatibility, reduces tech debt, and keeps your
app updated with the latest features.

Output Example:

Convert this snippet for the app router in NextJS

Prompt Idea

Migrate Page Router
Code to App Router

If you’re still using getStaticProps and getStaticPaths, shift
them into the modern App Router style with one prompt.

Benefits:
New Next.js capabilities, simplifies data fetching, and keeps
your code future-proof.

Prompt for
APIs & Backend

I need an API route for contact form handling.

I will have a form on the web with email & message
fields.

I need an email template to handle these variables and
it has to look friendly and use our branding colors.

It has to be submitted to the email from env variables:
CONTACT_EMAIL.

It should use SMTP.

It should throw correct user-friendly errors and log
them in Sentry.

Prompt Idea

Generate API Route for Contact
Form (SMTP + Error Handling)

Why build the same contact form handler over and over?
Get a ready-to-use route with SMTP support, proper
branding, and Sentry logging baked in.

Benefits:
New Next.js capabilities, simplifies data fetching, and keeps
your code future-proof.

Output Example:

Prompt for
Dynamic Pages
& Routing

I need to create a new route for products/[slug]
It will use new document types - products.

Create a schema for product in Sanity. Keep it simple,
just title, metadata, slug so we can generate route and
fetch sample data.

Slug will look like this: /products/:id-of-product

Create a route file with empty page template that will
jsut display layout + title.

Prepare methods like generatemetadata and fetch
sample data from Sanity (products schema) on the
server side.

These pages will be SSG pages. We need to update
revalidate API route to handle this pages too.

Prompt Idea

Generate Dynamic Page
for Media Content

Set up a page structure with slug handling, metadata, and
placeholders, so you can expand it as needed.

Benefits:
Speeds up new feature rollout, enforces consistency across
routes, and reduces mistakes with boilerplate code.

Prompts for
Productivity
& Debugging

Can you check in diff what can make the schema
incorrect?

Prompt Idea

Debug Schema Errors
with Sanity Typegen

Sanity typegen errors can be vague and frustrating, but you
don’t need to look for a solution by hand!

AI can help solve any console errors, so give it a try with
this prompt for finding the differences that can break your
schemas.

Benefits:
Speeds up new feature rollout, enforces consistency across
routes, and reduces mistakes with boilerplate code.

Output Example:

Generate Tab Section
Styleguide with Sample Data

In our projects, we include a `styleguide` page that shows
the sample usage of some of the components. Styleguides
often need multiple usage examples. This prompt generates
tabs with varied content scenarios, saving you the manual
setup.

Create a Tab section styleguide based on other
styleguide sections.

Use @tab component and do not implement your own
styles.

Create sample data, but omit the images. Use schema
initialValues as a reference for content.

Create multiple scenarios: 1 tab, 3 tabs, 5 tabs.

Mix the possibilities of content inside (text only, text +
image, image only).

Prompt Idea

Benefits:
Easier component testing, better documentation, and faster
onboarding for new team members.

Output Example:

"The goal of my ebook was to give you practical tools you
can apply directly in your daily work.

Remember: AI won’t replace your skills or judgment.

It works best as a partner that helps you move past
repetitive tasks and focus on solving the challenges that

really matter.

At Pagepro, we’ve seen how combining strong engineering
practices with AI can help companies modernize their
platforms, optimize performance, and scale without

unnecessary complexity.

If you’d like to explore how we can support your team,
whether it’s a CMS migration, a Next.js project, or building

a React Native app, let’s meet!"

Jakub Dakowicz
CTO at Pagepro

Book a Meeting

Conclusion

https://pagepro.co/contact?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs
https://pagepro.co/contact?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs

pagepro.co

thanks for
reading!

Explore our
Next.js Services

https://pagepro.co/?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs
https://pagepro.co/?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs
https://pagepro.co/services/nextjs-development?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs
https://pagepro.co/services/nextjs-development?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs
https://pagepro.co/services/nextjs-development?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs

