Ready-to-Use Al Pre
for Everyday Coding

D pagepro
TABLE OF CONTENTS

Introduction

How to Use These Prompts?

Prompt for Styling & Components

Prompts for Schema & Data Layer

Prompts for Next.js Migration & Updates

Prompt for APIs & Backend

Prompt for Dynamic Pages & Routing

Prompts for Productivity & Debugging

Conclusion

pagepro

INTRODUCTION

“As a CTO, | spend a lot of time looking for ways to speed
up my work without sacrificing quality, and Al has been the
answer to that.

Many developers worry about crafting perfect prompts,
convinced that careful wording will guarantee the best
results. The good news is, simple prompts in the right
context are often more effective.

Below, you’ll see examples that stay short and clear, yet
deliver strong outcomes because they build on real code or

focus on small, well-documented features.

Adapt them to your own work, spend less time on repetitive
fixes, and keep your projects moving.”

Happy prompting!

Jakub Dakowicz ?-;%‘j,u
CTO at Pagepro FJ !.

FIND ME ON LINKEDIN

https://www.linkedin.com/in/jakub-dakowicz/?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs
https://www.linkedin.com/in/jakub-dakowicz/?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs

|D pagepro

|D pagepro

PROMPT ENGINEERING BEST
PRACTICES

Designing great prompts takes more than copy-pasting.
Here are some rules that’ll get you the best results:

Be Explicit

The more context you give, like the framework version, coding style,
project structure, the better the Al’s response will be.

Provide Examples

Show the Al a snippet of what you already have so it can align with
your style.

Break Big Tasks into Smaller Ones

Instead of asking for a whole feature at once, ask for a component,
then a schema, then tests.

Don’t expect the first answer to be perfect. Treat it like pair-
programming: ask, review, refine.

Check the Output

Al can make mistakes. Always validate the results before
submitting them.

Change variable names, add details about your stack, and re-ask the
same questions with different wording.

|D pagepro
WHICH Al TOOLS SHOULD YOU USE?

These are the Al solutions | use and the ways | integrate
them into my work:

» ¢ Cursor IDE

This has become my go-to coding environment.

The built-in chat allows me to test ideas, debug issues, and
get instant feedback without switching contexts. It’s like
having a coding partner on hand, ready to suggest
improvements or catch mistakes before they slow me
down.

7R Perplexity

When | need reliable research or want to dive deeper into a
topic, | turn to Perplexity.

It helps me gather references and get structured answers
faster than traditional search. It’s especially useful for
staying ahead of new developments in frameworks and
tools.

&) ChatGPT

For process design, refining copy, or sparking creative ideas,
ChatGPT is where | go.

| don’t use it for writing production code, but it’s invaluable
for shaping documentation, brainstorming approaches, or
simply seeing a problem from a different angle.

|D pagepro

|D pagepro

UPDATE STYLES:
CONVERT FLEX TO GRID

LLMs are great in updating those small, but well-
documented things that can take you forever.

This kind of prompt is handy if you need to test out
different variants for you solution. For example converting
flex to grid, change layouts to different (2 columns to 4,
different alignments etc).

Convert these flex styles to the grid system.

We need 2 columns in a ratio of 3/1.

We need 2 rows, where 1st will have a 400px height and
the bottom should have auto height.

Benefits:
Cleaner markup, better maintainability, and more control
over responsive design.

|D pagepro

Output Example:

Let me fix the final linting error:
lframeWrapper.tsx +1 «
ound

Perfect! I've successfully implemented the intersection observer loading for the
iframe with a spinner. Here's what |'ve added:

Key Features Implemented:

1. Intersection Observer: The iframe now loads only when it's close to the viewport
(100px margin)

2. Loading States: Three distinct states:
* Mot loaded: Shows a placeholder with spinner and "Loading form..." text

* Loading: Shows an overlay spinner while the iframe loads

* Loaded: Shows the iframe content

3. Performance Optimization:
» The iframe only starts loading when it's about to enter the viewport
* Uses a 100px root margin to start loading slightly before it's visible
* Proper cleanup of the intersection observer

4. User Experience:
* Uses the existing Spinner component from your project

» Maintains the same visual styling and dimensions

= Smooth transitions between loading states

|D pagepro

UPDATE STYLES:
CONVERT FLEX TO GRID

Instead of loading iframes right away, this prompt waits
until they’re close to the viewport.

While they’re spinning up, it shows our existing loader so
users aren’t left staring at a blank box.

I need to load this iframe using the interesection
observer when it will be close to the viewport.

Additionally | need to display a spinner when it's being
loaded.

We already have a spinner in a project so use it instead
of creating a new one.

Benefits:

Cleaner markup, better maintainability, and more control
over responsive design.

|D pagepro

ALTERNATIVE PROMPT SAMPLE

Convert this to use this

display: grid;
grid-template-columns: 3fr 1fr;
grid-template-rows: 3fr 1fr;

Benefits:
Cleaner markup, better maintainability, and more control
over responsive design.

Output Example:

Summary of Changes
I've converted the component to use C55 Grid with the specified layout:

1. Grid Container: Changed from flexbox layout to CSS Grid using grid grid-cels-1 lg:grid-cols=-[3fr_1fr] grid-rows-
1 lg:grid-rows=[3fr_1fr]

2. Grid Areas:
» Main Content Card: Takes up the large area (3fr width x 3fr height) - top-left
« Ewvent Card: Top-right area (1fr width x 3fr height)
« Saarch Card: Bottom-left area (3fr width = 1fr height)
« CTA Card: Bottom-right area (1fr width x 1fr height}

3. Responsive Design: Maintained mobile-first approach where cards stack vertically on smaller screens and use the grid
layout on g breakpoint and above

4. Height Management: Added h-full classes to ensure cards fill their grid areas properly and added minimum heights to
the grid container

5. Content Positioning: Adjusted content positioning within cards to work well with the new grid layout, using flaxbox for
internal alignmenit

The layout now uses tha exact CS5 Grid specification you requested: grid-template-columns: 3fr 1fr and grid-template
-rows: 3fr 1fr, creating a proportional 2x2 grid layout.

|D pagepro

|D pagepro

BUILD COMPONENT FROM
FIGMA (WITHOUT SCHEMA)

Perfect for those early design-to-code steps: turn a Figma
selection into a working React component without worrying
about schemas yet. You can focus on the Ul before layering
in data structures.

Note: this should be done using the Figma MCP to connect
to the design

Start by creating just a React component for this
module.

Do not create the Sanity schema yet.
For text nodes, use the RichText component.
You can use @HeroMain.tsx as an example.

The image should have a similar style to the one in the
hero main component.

Benefits:

Cleaner markup, better maintainability, and more control
over responsive design.

pagepro

Output Example:

¥ Component Features

. Structure & Layout
Headar Saction: Two-column layout with title and description

Tab Mavigation: Horizontal tabs with active states and keyboard navigation

Tab Content: Full-width content area with background images and overlay text

. Interactive Functionality
Tab State Management: Uses use5tate totrack active tab
Keyboard Mavigation: Supports Enter and Space key navigation

Accessibility: Proper ARIA attributes and focus management

. Styling & Design System
Typography: Uses your existing CSS classes (text-h5 , text-section-subheading , etc.)
Colors: Matches your color palette | primary-blue , secondary-dark—gray, tertiary-grey)
Responsive Design: Mobile-first approach with breakpoints

Image Overlay: Usas your existing ImageOverlay component pattern

. Key Design Patterns from HeroMain
Section wrapper with conditional padding for first module
Container with max-width and consistent padding
RichText components for all text content
Proper TypeScript interfaces following your conventions

Module props spreading for Sanity integration

. Responsive Behavior

Mobile: Stacked layout with full-width tabs
Tablet/Desktop: Side-by-side header layout with horizontal tabs

Tab content: Maintains aspect ratio across all screen sizes

The component is ready to use and follows all your established patterns. When you're ready to create the Sanity schema, this
component structure will integrate seamlessly with your CMS setup.

Would you like me to:
1. Test the component by adding it to your module map?
2. Create the Sanity schema for this modula?

3. Add any additional functionality or styling adjustments?

|D pagepro

BUILD COMPONENT
& SCHEMA FROM FIGMA

When you need both the visual component and the Sanity
schema, this prompt accelerates the full flow. Your Ul and
data model will stay in sync from the start.

I have a selection in Figma.

I want a component that will match the one in Figma.
Use other modules as a reference.

Prepare a Ul module component, and add it to the
modules list. Add it to the Sanity modules list.

Create a Sanity schema for this module.
| want to name it ContentWithLogos.

Title and descriptions should be a single simpleRichText
field.

I want a list of logos (min 3) and an option to turn on
animation.

Benefits:
Cleaner markup, better maintainability, and more control
over responsive design.

|D pagepro

Output Example:

Perfect! I've successfully created the ContentWithLogos module that matches
your Figma design. Here's what I've implemented:

¥ What's Been Created

1. Sanity Schema (src/sanity/schemaTypes/modules/content—with-
logos.ts)

Content field: Single simpleRichText field for title and description

Logos field: Array of images with minimum 3 logos validation

Animation option: Boolean toggle to enable/disable logo animation

Preview functionality: Shows content preview with logo count and animation
status

Initial values: Pre-populated with "Qur Partners" example content

2. React Component (src/ui/modules/ContentWithLogos.tsx)

Responsive design: Mobile-first approach with proper spacing
Content section: Centered text content using existing RichText component

Logo integration: Uses your existing LogesList component with animation
support

Consistent styling: Follows project patterns with proper padding and container
widths

3. Integration Updates

» W Added to Sanity schema types index

» ¥ Added to modules fragments list (in "content" group)
» & Added to React modules index with proper mapping
- ¥ Alphabetically ordered in all lists

|D pagepro

@ Design Features

The component replicates your Figma design with:

» Centered layout with proper max-width containers
Two-part structure: Content section + Logos section
Flexible content: Rich text field supports the "Our Partners” styling pattern
Logo animation: Optional horizontal scrolling animation

Responsive spacing: Proper gaps and padding for all screen sizes

*, Usage

The module is now available in your Sanity Studio under the "Content" group. You
can:

1. Add rich text content (title + description)
2. Upload minimum 3 partner logos
3. Toggle logo animation onfoff

4. Use standard module options (padding, etc.)

The component will render exactly like your Figma design, with the logos

displayed in a responsive grid (static) or animated horizontal scroll (when
enabled).

|D pagepro

REFACTOR SCHEMAS:
EXTRACT COMMON CODE

Schemas often get messy with repeated patterns. Use this
prompt to spot duplication and centralize shared fields into
a base schema.

I have @link.tsx and @link.tsx - they both have a lot of
common code.

Can we create a linkBaseSchema that can be used for
both of them?

Benefits:
Cleaner codebase, easier maintenance, and fewer bugs
caused by inconsistent schema definitions.

|D pagepro

Output Example:

This refactoring:

1. Creates a shared base (1inkBaseSchema.ts) with the common fields and
preview select logic

. Eliminates code duplication - the 4 core link fields (type, internal, external,
params) are now defined once

. Maintains all existing functionality - both schemas work exactly as before

. Makes future changes easier - any updates to the core link logic only need to
be made in one place

. Keeps schema-specific features - the main link keeps its label and icon fields,
richText link stays minimal

The base schema exports two functions:
* createLinkBaseFields() - returns the common field definitions

*» createlLinkBasePreviewSelect() - returns the common preview select object

Both existing schemas now extend this base while maintaining their specific
differences.

| can sea that both link schemas share a lot of common code. Let me analyze the differances and create a reusable base
schama.

Perfect! | can sea the differences betweean the two schemas:

Main differences:

1. Hame: "link" wvs “richTextLink"

2. Label field: Main link has a label field, richText link doesn't

3. lcon fields: Main link has withIcon and icen fields, richText link doesn't
4. Preview: Main link shows labelftitle and icon, richText link just shows "Link"

5. Initial value: Main link sets withIcon: false

Lat me create a base schema that both can extend:

pagepro

VisibleFieldValidator, requiredField } f
Lib; t -utils”;
t linkBaseFields = [

options: {
layout: “r:
list: [
{ title: "internal", value:
ernal"
Il

1

J
]

1)
defineField({
name: "internal
type:
title: "Internal
description: ge within th 1ain
to: [{ type: "}, { type: 3.,
hidden: ({ parent }) => parent?.type ! "internal",
validation: makeVisibleFieldValidator<ReferenceRule>
(requiredField),
IFl)g
defineField({
name: " ernal",
title: "External URL",
description: "Enter L Links outs of our domain",
placeholder: “"https:
type: “"url",
validation: makeVisibleFieldValidator<UrlRule=((Rule) =>
Rule.uri({
scheme: ["http", "https"
allowRelative: true,

)
hidden: ({ parent }) == parent?.type !==
3,
defineFie
name: "
title:
placehol
type: "string",
hidden: ({ parent }) => parent?.type !== "internal",

- linkBasePreviewSelect = {

internal:
params: "p
externa
};go(f,

|D pagepro

| pagepro

UPDATE LEGACY MIDDLEWARE
TO NEXT.JS 15+

Middleware APIs evolve quickly. Modernize old logic with
this prompt, so it will run smoothly in Next.js 15 without
breaking authentication or redirects.

3

- middleware: NextMiddleware) (request) => {

-
1.5

cookies,
nextUrl: { pathname, locale },
} = request;

- locationCookieValue = cookies.get("locale")?.value;

locationCookieValue) {
tUrl = request.nextUrl.clone();

redirectUrl.pathname = '
redirectUrl.searchParams.set("returnurl”,

request.nextUrl.pathname);
eturn NextResponse.redirect(redirectUrl);

= request.nextUrl.clone();

t redirectRoute ait
rvice.getNewUrlFromPageld<string=(
geld

rectRoute) {
newlrl.pathname = redirectRoute;

return NextResponse.redirect(newlrl);

ault middleware;

|D pagepro
@ PROMPT IDEA

Update this syntax to be valid in NextJS 15.

Benefits:

Long-term compatibility, reduces tech debt, and keeps your
app updated with the latest features.

|E\ pagepro

UPDATE LEGACY API HANDLER
TO NEXT.JS 15+

Old API handlers can break with new Next.js versions. With
this prompt you can refactor them to follow updated
patterns.

import { format } from "date-fns";

rt { ApiRouteHandler } fi
import PdfService from "~api vi ;

t handler: ApiRouteHandler = async (request, response) == {

st pdfService new PdfService();
st { pdfUrl } = await pdfService.createReport({

erId: request.body.userId

const getPdfResult = await pdfService.getFile(pdfUrl);

st filename = 'Report_${format{ new Date(), "y MM-dd*"

response.setHeader("Content-Type", "application/pdf");

‘¢{filename}"

response.send(getPdfResult);

} catch (error) {

rt default handler;

Can you update this syntax to Next.JS 15?

|D pagepro

Benefits:
Long-term compatibility, reduces tech debt, and keeps your
app updated with the latest features.

Output Example:

I've provided you with both versions updated for Next.js 15. The main issue remaining is
the import path for your PdfService class. Hera's what you need to do:

Summary of Changes Made:

App Router Version (Recommended - app/api/generate-report/route.t
s)

« & Updated to use NextRequest and NextResponse

« & Changed to named export POST function

- W Updated request body parsing with await request.json()

« & Improved error handling

Pages Router Version (Compatible - pages/api/generate-report.ts)

« W Updated types to NextApiRequest and NextApiResponse
« & Added method checking for POST requests

« & Improved error handling

|E\ pagepro

MIGRATE PAGE ROUTER
CODE TO APP ROUTER

If you’re still using getStaticProps and getStaticPaths, shift
them into the modern App Router style with one prompt.

export async function getStaticPaths() {
return {

paths: [1],

fallback: 'blocking',

I

export async function getStaticProps({ params }) {
st articleData = await fetchArticleData(params.id);
return {
props: { articleData },
revalidate: 3600,

};

@ PROMPT IDEA

Convert this snippet for the app router in NextJS

Benefits:
New Next.js capabilities, simplifies data fetching, and keeps
your code future-proof.

|D pagepro

|D pagepro

GENERATE API ROUTE FOR CONTACT
FORM (SMTP + ERROR HANDLING)

Why build the same contact form handler over and over?
Get a ready-to-use route with SMTP support, proper
branding, and Sentry logging baked in.

@ PROMPT IDEA

I need an API route for contact form handling.

I will have a form on the web with email & message
fields.

I need an email template to handle these variables and
it has to look friendly and use our branding colors.

It has to be submitted to the email from env variables:
CONTACT_EMAIL.

It should use SMTP.

It should throw correct user-friendly errors and log
them in Sentry.

Benefits:
New Next.js capabilities, simplifies data fetching, and keeps
your code future-proof.

|D pagepro

Output Example:

¥ Complete Contact Form System

. APl Route (/api/contact)

POST endpoint that handlas form submissions

Input validation using Zod schema (email format, message length 10-1000 chars)
SMTP email sending with configurable providers

Comprehensive error handling with user-friendly messages

Sentry integration for error logging and monitaring

. Email Template

Richfield branding using your official colors:

» Primary Blue | 20856AF) for headers and accents

» Primary Red-Orange [#DE473C) for highlights

» Professional typography with Lato and Oswald fonts
Responsive design that works on all devices

Clean layout with proper spacing and visual hierarchy

Reply-to functionality o you can respond directly to the sender

. Contact Form Component { ContactForm. tsx)

Real-time validation with immediate feedback
Loading states and success confirmation
Accessibility features (proper labels, ARIA attributes)
Error handling for network issues and validation errors

Responsive design using your Tailwind CSS classes

. Environment Configuration

Updated env.ts with contact form variables
Required environment variablas:

+ CONTACT_EMAIL - where to send the messages

+ SMTP_HOST, SMTP_PORT , SMTP_USER , SMTP_PASS - SMTP configuration

. Comprehensive Documentation
Complete setup guide in docs/CONTACT_FORM. md
SMTP provider instructions (Gmail, Outlook, Yahoo, custom)

Troubleshooting section for common issues

Security considerations and future enhancement ideas

|D pagepro

|D pagepro

GENERATE DYNAMIC PAGE
FOR MEDIA CONTENT

Set up a page structure with slug handling, metadata, and
placeholders, so you can expand it as needed.

@ PROMPT IDEA

| need to create a new route for products/[slug]
It will use new document types - products.

Create a schema for product in Sanity. Keep it simple,
just title, metadata, slug so we can generate route and
fetch sample data.

Slug will look like this: /products/:id-of-product

Create a route file with empty page template that will
Jjsut display layout + title.

Prepare methods like generatemetadata and fetch
sample data from Sanity (products schema) on the
server side.

These pages will be SSG pages. We need to update
revalidate API route to handle this pages too.

Benefits:
Speeds up new feature rollout, enforces consistency across
routes, and reduces mistakes with boilerplate code.

|D pagepro

|D pagepro

DEBUG SCHEMA ERRORS
WITH SANITY TYPEGEN

Sanity typegen errors can be vague and frustrating, but you
don’t need to look for a solution by hand!

Al can help solve any console errors, so give it a try with
this prompt for finding the differences that can break your
schemas.

> richfield@l.@.® predev /Users/jakub/Projects/richfield-college-website
> pnpm ts:typegen

> richfield@l.9.® ts:typegen /Users/jakub/Projects/richfield-college-website
> pnpm ts:extract & pnpm ts:generate

> richfield@l.9.@ ts:extract /Users/jakub/Projects/richfield-college-website Add to Chat %L
> sanity schema extract e
i Extracting schemaYou have configured Sanity client to use a token in the browser. This may cause unintentional security
issues. See https://wew.sanity.io/help/js-client-browser-token for more information and how to hide this warning.

Failed to extract schema

Open file in editor (emd + click)

Can you check in diff what can make the schema
incorrect?

|E} pagepro

Benefits:
Speeds up new feature rollout, enforces consistency across
routes, and reduces mistakes with boilerplate code.

Output Example:

@®_Schema Issues Identified:

1. Duplicate Module Entry (Primary Issue)

In src/sanity/schemaTypes/fragments/modules.ts, line 16 has a duplicate "ca

rd-tabs" entry:

typescript

of: [
{ type: "card-list" },
{ type: "card-tabs" },
1 type: "content-with-logos" }
{ type: "card-tabs" 1,
1,

|D pagepro

GENERATE TAB SECTION
STYLEGUIDE WITH SAMPLE DATA

In our projects, we include a "styleguide’ page that shows
the sample usage of some of the components. Styleguides
often need multiple usage examples. This prompt generates
tabs with varied content scenarios, saving you the manual
setup.

PROMPT IDEA

Create a Tab section styleguide based on other
styleguide sections.

Use @tab component and do not implement your own
styles.

Create sample data, but omit the images. Use schema
initialValues as a reference for content.

Create multiple scenarios: 1 tab, 3 tabs, 5 tabs.
Mix the possibilities of content inside (text only, text +

image, image only).

Benefits:

Easier component testing, better documentation, and faster
onboarding for new team members.

|D pagepro

Output Example:

This updated tabs styleguide now:

Uses Real Components:

* CardTabSection - The complete section component from @/ui/modules/Card
Tabs

* Tabs - The standalone tabs component from @/ui/modules/CardTabs/Tabs

Shows Real Data Structures:

» LUlses proper Sanity.CardTabs types
« Shows the actual rich text content structure

« Demonstrates the image overlay functionality

pagepro

CONCLUSION

"The goal of my ebook was to give you practical tools you
can apply directly in your daily work.

Remember: Al won’t replace your skills or judgment.

It works best as a partner that helps you move past
repetitive tasks and focus on solving the challenges that
really matter.

At Pagepro, we’ve seen how combining strong engineering
practices with Al can help companies modernize their
platforms, optimize performance, and scale without
unnecessary complexity.

If you’d like to explore how we can support your team,

whether it’s a CMS migration, a Next.js project, or building
a React Native app, let’s meet!”

Jakub Dakowicz ?-;%‘j,u
CTO at Pagepro FJ !.

BOOK A MEETING

https://pagepro.co/contact?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs
https://pagepro.co/contact?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs

THANKS FOR
READING!

EXPLORE OUR
NEXT.JS SERVICES

pagepro

pagepro.co

https://pagepro.co/?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs
https://pagepro.co/?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs
https://pagepro.co/services/nextjs-development?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs
https://pagepro.co/services/nextjs-development?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs
https://pagepro.co/services/nextjs-development?utm_source=newsletter&utm_medium=ebook&utm_campaign=Nextjs-ebook-prompts&utm_id=nextjs

